
Index

1. Introduction

2. Learning Finite-State Automata

• Using Positive Data only: ECGI, k-TSI, MGGI

• Using Positive and Negative data: RPNI.

• Probabilistic techniques.

3. Learning Finite-State Transducers

4. Applications

E. Vidal – UPV: Oct. 2000

Learning 2000 Finite Automata

Regular Languages are Worth Inferring

• Many practical problems admit a regular modeling making the use
of ”more powerful” recursive models unnecessary.

• Regular Languages can account for local, short-term constraints
(like N-Grams) as well as for the more global or long-term
constraints that often underlay in real aplications.

• Any language can be approximated (e.g. in a stochastic sense)
with arbritary precision by a Regular Language.

• Properties of Regular Languages are relatively well known; this
makes the development of inference methods easier.

• Simple and efficient parsing methods exist for strings belonging to
Regular Languages.

E. Vidal – UPV: Oct. 2000 Section 4: 1

Learning 2000 Finite Automata: positive data

Index

1. Introduction

2. Learning Finite-State Automata

• Using Positive Data only: ECGI, k-TSI, MGGI
• Using Positive and Negative data: RPNI.

• Using Probabilistic information.

3. Learning Finite-State Transducers

4. Applications

E. Vidal – UPV: Oct. 2000 Section 4: 2

Learning 2000 Finite Automata: ECGI

Error Correcting Grammatical Inference (ECGI)
[Rulot & Vidal, 87]

• ECGI is a grammatical inference heuristic: it was explicitly designed
to capture the relevant regularities of concatenation and length
exhibited by the substructures of unidimensional patterns.

• ECGI relies on error-correcting parsing both to build the grammars to
be inferred and to deal with the errors (irregularities) of the patterns with
respect to the learned grammars.

• ECGI builds up a stochastic regular grammar through a single
incremental pass over the (positive) training set.

E. Vidal – UPV: Oct. 2000 Section 4: 3

Learning 2000 Finite Automata: ECGI

Stochastic ECGI

To achieve useful performance the inferred grammars must be complemented
with statistical information:

• Frequency of utilization of each of the inferred rules.

• Frequency of insertion deletion & substitution of each symbol.

Probabilities of both the error and non-error rules can be directly estimated
from these frequencies, allowing stochastic error-correcting parsing to be used
with new unknown samples.

If there are several classes with one grammar per class the parsing probabilities
can be used for maximum likelihood classification.

E. Vidal – UPV: Oct. 2000 Section 4: 4

Learning 2000 Finite Automata: ECGI

Applications of ECGI

Speech Recognition:

• Speaker-Independent Spanish Digit Recognition [Rulot et al., 89]

• Language Modeling [Prieto & Vidal, 92]

Planar Shape Recognition (OCR):

• Mixed Size Font-independent printed digit recognition [Vidal et al., 92]

• Writer-independent Handwritten digit recognition [Vidal et al., 93]

Music processing:

• Learning Music Styles for automatic composition [Cruz & Vidal, 97]

• Music Style recognition [Cruz & Vidal, 98]

Banded chromosome recognition: [Vidal & Castro, 97]

E. Vidal – UPV: Oct. 2000 Section 4: 5

Learning 2000 Finite Automata: k-TSI

k-Testable Languages in the Strict Sense (k-TS)
[Garcı́a & Vidal, 90]

A k-TS Language is defined by a four-tuple Zk = (Σ, I, F, T) where:

• Σ is the alphabet ;
• I and F are sets of initial and final substrings of length smaller than k;
• T is a set of forbidden substrings of length k.

A language associated with Zk is defined as [Zalcstein,72]:

L(Zk) = IΣ∗ ∩ Σ∗F − Σ∗TΣ∗

L(Zk) consists of strings that begin with substrings in I, end with substrings in F
and do not contain any substring in T .

Example:

Z2 = ({a, b, c, d, e}, {a, d}, {c, e}, {a, b, c, d, e}2 − {ab, db, bb, bc, be})
L(Z2) = {abc, abe, dbc, dbe, abbc, abbe, dbbc, dbbe, abbbc, abbbe, dbbbc, dbbbe, . . . } =

= (a+ d) b+(c+ e)

. Stochastic K-TS languages are equivalent to N-GRAM’s with N=K [Segarra,93].

E. Vidal – UPV: Oct. 2000 Section 4: 6

Learning 2000 Finite Automata: k-TSI

k-TS Inference Algorithm (K-TSI)
[Garcı́a & Vidal, 90]

Input : k : N; S : Set of strings //positive training sentences
Output : Ak=(Σ, Q, δ, qI, QF) //Inferred Automaton
AuxVar : x, y : Strings; q′, q′′, q : States //represented as strings over Σ

Σ = δ = ∅; qI := λ; Q = {qI}; QF := ∅ //λ is the empty string
∀x ∈ S do q′ := qI ;

for i := 1 . . . |x| do
if ∃q′′ | (q′, xi, q′′) ∈ δ then q = q′′ //parse using current structure
else //create new alphabet entry, state,

Σ := Σ ∪ {xi} //and/or transition, as required
y := q′xi; if |y| > k − 1 then y := y2...|y| endif ; q := y

Q := Q ∪ {q}; δ := δ ∪ {(q′, xi, q)}
if i = |x| then QF := QF ∪ {q} endif

endif
q′ := q

endfor
end∀
Ak := (Σ, Q, δ, qI, QF)

E. Vidal – UPV: Oct. 2000 Section 4: 7

Learning 2000 Finite Automata: k-TSI

Illustration of k-TS Inference

Successive automata produced by k-TSI from S = {aa, aba, abba, abbba} and k = 3.
Thick lines represent states and transitions consolidated in previous steps, while thin lines are used for states and/or
transitions that needed to be created in each step:

x=aa

 aa aaa

x=aba

 aa

ab

b

aaa

baa

x=abba

 aa

ab

b

aaa

bbb

ba
a

a

x=abbba

 aa

ab

b

aaa

bbb

ba
a

b

a

L3 = ab∗a

Automata yield by k-TSI from S = {aa, aba, abba, abbba} for k = 1, k = 2 and k = 4:

b
a

 aa

a

bb

a b

 a a

 aa

 a

 ab b

aba

a

abbb bba
a

bbbb a

L1 = (a+ b)∗ L2 = a(a+ b)∗a+ a L4 = S

E. Vidal – UPV: Oct. 2000 Section 4: 8

Learning 2000 Finite Automata: k-TSI

Properties of k-TS Languages and the k-TSI Algorithm
[Garcı́a & Vidal90]

Let Lk(S) the k-TS language learned by k-TSI
for a given sample S:

• Lk+1(S) ⊆ Lk(S)

• Lm(S) = S, m = maxx∈S|x|

• ∀S′ ⊂ S Lk(S′) ⊆ Lk(S)

• Lk(S) is the smallest k-TSL that contains S

S+

2L
L3

m=L

4L

1L = Σ*

• For any fixed k the class of k-TS languages can be identified in the limit using
the k-TSI algorithm with positive data .

• The whole class of Locally Testable Languages in the Strict Sense (LTS) can
be identified in the limit using k-TSI with positive data for increasing values of
k and using negative data to control the growth of k.

The LTS class is the union of all k-TS languages for k = 1, 2, 3 . . .

E. Vidal – UPV: Oct. 2000 Section 4: 9

Learning 2000 Finite Automata: MGGI

Limitations of k-TS languages

S = {abc, dbe, abbc, dbbe, abbbc, dbbbe} ⊂ (ab+c) + (db+e).

Automata yield by k-TSI for 2 ≤ k ≤ 4:

d

d

aa

bb

b
b

e

e

cc

 d

d

 aa

db
b

abb

bbb

be
e

bcc

b cb

e

L2 = (a+ d)b+(c+ e) L3 = L2 − {dbc, abe}

 d

d

 a a

 db
b

 ab
b

dbe

e
dbb

b

abc

c

abb
b bbc

c

bbb

b c

bbe

eb

e

L4 = S

Inferred languages:
L2 = (a+ d)b+(c+ e) = {abc, abe, dbc, dbe, . . . , abbbbc, abbbbe, dbbbbc, dbbbbe, . . . }
L3 = L2 − {abe, dbc} = {abc, dbe, abbc, abbe, . . . , abbbbc, abbbbe, dbbbbc, dbbbbe, . . . }
L4 = S = {abc, dbe, abbc, dbbe, abbbc, dbbbe}

L2 and L3 are clear overgeneralizations, while L4 is exactly the training
sample. No language is a satisfactory approximation to the target language.

E. Vidal – UPV: Oct. 2000 Section 4: 10

Learning 2000 Finite Automata: MGGI

Limitations of k-TS languages (cont.)

Some Families of Languages

Other Classes of Languages

TDR

Context-Free

Regular

k-T

(k-1)-Revk-Rdef
k-TS

k-Def

K-TS languages are among the most restricted regular languages.

Even if we restrict ourselves to the class of Regular Languages (RL), many other possibilities
exist that are significantly more powerful than k-TS/N-Grams, in the sense that they can help
modeling more global or long-term constraints.

E. Vidal – UPV: Oct. 2000 Section 4: 11

Learning 2000 Finite Automata: MGGI

Morphisme-based Techiques: Morphisme Theorem

Any Regular Language can be Represented as a 2-TS language:

Morphisme Theorem [Medvedev,64]:

Let Σ be a finite alphabet and L ⊆ Σ∗ a regular language. There exist then
a finite alphabet Σ′, a letter-to-letter morphisme h : Σ′∗ → Σ∗, and a Local
Language l over Σ′ such that L = h(l).

Example:
Let L = {1, 111, 11111, 1111111, . . . } be the set of strings of 1’s of odd length.
L is (obviously) emphnot local; however it can be obtained by applying an
alphabetic morphism h to the Local Language l = l(Z):

• Z = (Σ, I, F, T,) = ({a, b}, {a}, {a}, {aa, bb})
• l(Z) = {a, aba, ababa, abababa, . . . }
• h : {a, b}∗ → {1}∗ : h(a) = h(b) = 1
• h(l(Z)) = {1, 111, 11111, 1111111, . . . }

A letter-to-letter morphisme between two alphabets Σ′ and Σ is a function h : Σ′
∗ → Σ∗

such that: h(xy) = h(x)h(y) ∀x, y ∈ Σ′; h(Σ′) = Σ ; and h(λ) = λ.

E. Vidal – UPV: Oct. 2000 Section 4: 12

Learning 2000 Finite Automata: MGGI

Learning General Regular Grammars from Positive Data: MGGI
[Garcı́a et al.,87]

Morphic Generator Grammatical Inference (MGGI):

S

h

2-TSI

lL

S’

(S’)

MGGI

g The lack of known target structure is
compensated with a-priori knowledge about
(perhaps long-term) syntactic constraints that
are desired to be captured by the inferred
model. This knowledge is represented through
appropriate word-renaming functions (g and h).

Property [Garcı́a et al.,87]: Let S ⊂ Σ∗ be
a finite set of sentences and L = h(l(g(S)))
the language obtained from S by MGGI. If
h(g(S)) = S, then S ⊆ L ⊆ l(S).

*Σ
l(S)

L
S

E. Vidal – UPV: Oct. 2000 Section 4: 13

Learning 2000 Finite Automata: MGGI

MGGI: Example

Let S = {abc, dbe, abbc, dbbe, abbbc, dbbbe}.

By inspection one can guess that a key syntactic feature consists of correctly matching
beginings and ends of sentences. This suggests the following renaming function:

g(S) = S′ = {abacc, dbdee, abacbacc, dbdebdee, abacbacbacc, dbdebdebdee}

Using S′ as a training set, the 2-TSI algorithm yields the automaton on the left.

To comply with the condition of the MGGI Theorem (i.e., h(g(S)) = S) the
morphisme h simply consists of droping the subindexes. By minimizing the
result, the automaton on the right is obtained:

a

a

dd

b ac
b ac

b de
b de

b ac

c
c

b de

e
e

1

2

a

3
d

4
b

5
b

b 6
c

b

e

E. Vidal – UPV: Oct. 2000 Section 4: 14

Learning 2000 Finite Automata: MGGI

Applications of k-TSI and MGGI

Speech Recognition:

• Speaker-Independent Spanish Digit Recognition
[Garcı́a et al., 90] [Segarra, 93]

• Language Modeling [Vidal & Llorens, 96]

Music processing:

• Learning Music Styles for automatic composition
[Cruz & Vidal, 97]

• Music Style recognition [Cruz & Vidal, 98]

E. Vidal – UPV: Oct. 2000 Section 4: 15

Learning 2000 Finite Automata: RPNI

Index

1. Introduction

2. Learning Finite-State Automata

• Using Positive Data only: ECGI, k-TSI, MGGI

• Using Positive and Negative data: RPNI.
• Using Probabilistic information.

3. Learning Finite-State Transducers

4. Applications

E. Vidal – UPV: Oct. 2000 Section 4: 16

Learning 2000 Finite Automata: RPNI

The Prefix tree Acceptor

• Set of Prefixes of a language: L ⊆ Σ∗ : Pr(L) = {u ∈ Σ∗|uv ∈ L, v ∈ Σ∗}

• Prefix Tree Acceptor of a finite set S+ ∈ Σ∗ : PT (S+) = (Q,S, δ, q0, F)

Q = Pr(S+); q0 = λ; F = S+; δ(ua) = ua iff u, ua ∈ Pr(S+)

Example: S+ = {ab, aaba, baa, bbb}

a
a b a

b
b b

a

b

a

a

b

aa aab aaba

ab

baa

bbbbb

ba
λPT(S)+

E. Vidal – UPV: Oct. 2000 Section 4: 17

Learning 2000 Finite Automata: RPNI

Quotient Automaton or Automaton Derivative (A/π)

Let A = (Q,Σ, δ, I, F) and let p = B1, B2, . . . Bn be a partition on Q.

Quotient Automaton : A′ = A/π = (Q′,Σ, δ′, I ′, F ′):

Q′ = π, I ′ = {Bi ∈ π | Bi∩I 6= ∅}, F ′ = {Bi ∈ π | Bi∩F 6= ∅}
Bj ∈ δ′(Bi, a) if qi ∈ Bi, qj ∈ Bj, qj ∈ δ(qi, a)

Example: S+ = {ab, aaba, baa, bbb};

A = PT (S+); π = {B1, B2, B3, B4}, I ′ = {B1}; F ′ = {B3, B4}
B1 = {λ, b, ba, bb}, B2 = {a, aa, aab}, B3 = {ab, baa, bbb}, B4 = {aaba}

a
a b a

b

b b

a

b

a

a

b

aa aab aaba

ab

baa

bbbbb

ba
λ B4

B3
B1

B2

A A/π
B1

B2

B3

B4

a,b

a,b

a,b

a
b

a

E. Vidal – UPV: Oct. 2000 Section 4: 18

Learning 2000 Finite Automata: RPNI

Properties of Prefix Tree Acceptor Derivatives
[Pao & Carr, 78] [Angluin,82]

Let S+ ⊂ Σ∗ be a finite sample of a language L and PT (S+) its Prefix Tree Acceptor :

1. If |π1| < |π2| (π2 is finer than π1) then L(PT (S+)/π2) ⊆ L(PT (S+)/π1)

2. If S+ is structurally complete with respect to L then ∃π : L(PT (S+)/π) = L

Based on these properties different state-merging schemes lead to different GI
methods. Two basic points of view:

• Characterizable: Choose a partition scheme that guarantees identification of a
convenient class of languages. E.g.:

– k-RI method for k-Reversible languages [Angluin,82]
– General Regular Language Inference from + and - samples (RPNI) [Oncina,92]

• Heuristic: Choose a partition scheme that leads to generalizations of S+ that
are adequate for the aplication considered. E.g.:

k-Tails [Bierman & Feldman, 72], Clustering of Tails [Miclet,80], k-Contextual [Muggleton,84]

E. Vidal – UPV: Oct. 2000 Section 4: 19

Learning 2000 Finite Automata: RPNI

Learning General Regular Languages from + and - Data

Given finite samples S+ ⊂ Σ∗ and S− ⊂ Σ∗, the problem of finding the
smallest Deterministic Finite Automaton (DFA) A, such that S+ ⊆ L(A)
and S− ∩ L(A) 6= ∅ is NP-HARD [Gold,78] [Angluin,78].

However we can instead try to obtain a DFA A′ which is copmatible with
S+ and S−, but without insisting that the size of A′ strictly be the smallest
possible for S+ and S−.

This idea has been followed in [Oncina,92], leading to the RPNI algorithm
which has been shown to be able to (efficiently) identify any Regular
Language in the limit using both + and − samples.

(Related approach: [Lang,92])

E. Vidal – UPV: Oct. 2000 Section 4: 20

Learning 2000 Finite Automata: RPNI

Learning General Regular Languages from + and - Data:
RPNI Algorithm [Oncina,92]

Algorithm RPNI (Regular Positive & Negative Inference)
Input: S+ S-
Output: A: DFA which accepts S+ and do not accept R-

Method: A:=PT(S+); (let Q(A) denote the set of states of A)
forall q in Q(A) - lambda in lexicographic order do

forall p < q in lexicographic order do
A’=merge(A,p,q)

while A’ is not deterministic do
select q’, q’’ which violate determinism
A’=merge(A’,q’q’’)

endwhile
if A’ accepts some strings from S- then A=A’

end forall p
end forall q

end RPNI

E. Vidal – UPV: Oct. 2000 Section 4: 21

Learning 2000 Finite Automata: RPNI

Properties of the RPNI Algorithm [Oncina,91]

1. Correctness: the resulting automaton A is deterministic
and S+ ⊆ L(A), S− ∩ L(A) = ∅

2. Polynomial worst-case time complexity: 0(np2 + p3)
where n =

∑
x∈S− |x|, p =

∑
x∈S+ |x| (much better linear

observed average cost)

3. Convergence:

• if S+ contains a (small) representative sample of the
unknown target language L then the resulting automaton
A is the smallest DFA for L

• using RPNI the class of Regular Languages can be
identified in the limit from complete (both + and -) data
with polynomial update complexity

E. Vidal – UPV: Oct. 2000 Section 4: 22

Learning 2000 Stochastic Finite Automata

Index

1. Introduction

2. Learning Finite-State Automata

• Using Positive Data only: ECGI, k-TSI, MGGI.

• Using Positive and Negative data: RPNI.

• Using Probabilistic information.

3. Learning Finite-State Transducers

4. Applications

E. Vidal – UPV: Oct. 2000 Section 4: 23

Learning 2000 Stochastic Finite Automata

Inference of Stochastic Regular Languages

• Stochastic Regular Languages can overcome Gold’s negative computational
results and can be effectively learned from only positive data; e.g. under
Wharton’s paradigm of approximate identification in the limit.

• The lack of negative data to control overgeneralization can be compensated by
statistical information gathered from the positive data.

• Stochastic languages are particularly relevant for their use in most real
applications

E. Vidal – UPV: Oct. 2000 Section 4: 24

Learning 2000 Stochastic Finite Automata

Learning Stochastic Regular Languages Through State Merging

• Basic idea:

Given a finite sample S, orderly try merging the states of the Stochastic Prefix
Tree Acceptor of S as long as the tails of the merged states have similar
likelihood [Oncina,93].

• Related approach:

If A is a current automaton, greedily merge those pairs of states of A which
maximize Bayesian posterior probability p(A|S) ∼ p(S|A)p(A) [Stolcke &
Omohundro,93]. The prior p(A) is supplied by hand under the assumption
that smaller and simpler models should have higher a priori probability.

E. Vidal – UPV: Oct. 2000 Section 4: 25

Learning 2000 Stochastic Finite Automata

Backward-Forward based techniques

• If an estimate of the appropriate number of states or non-terminals n is available,
we can obtain a locally optimal estimate of the probabilities of a fully connected n-
State Hidden Markov Model (HMM) from a sequence of training strings. Techniques
to estimate the number of states n can be derived from [Ziv & Merhav,92]

• By (optionally) pruning out zero or low probability transitions a (stochastic) finite-
state automaton can be obtained.

• A drawback of this technique is its high sensitivity to the probability
initialization required by Baum-Welch/Backward-Forward reestimation [Stolcke &
Omohundro,93]

Applications:
• Used to initialize the Inside-Outside algorithm for learning Context-Free Grammars [Lari & Young,90]

• Automata obtained by any other GI technique can be used to initialize Backward-Forward
reestimation, generally leading to an increase of performance over the basic GI technique used
[Casacuberta,90]

E. Vidal – UPV: Oct. 2000 Section 4: 26

Learning 2000 Finite Automata

E. Vidal – UPV: October 2000 Section 4: 27

